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Here I rephrase some of the results of work1–6 performed in several collaborations with
K.Heinemann & J.A.Ellison∗, D.P.Barber†, and A.Kling‡ on a generalized look
on spin dynamics and beam polarization in storage rings. It is done in a way that
emphasizes the applicability of the concepts to real world polarized beams rather than
presenting the results in their most general form. The latter view can be found in several
articles on the ArXiv and will be published in refereed journals soon. I will introduce
several “spin-related” systems, state some selected main results of the above mentioned
work and then recover and compare some basic (and some not so basic) findings for the
various systems in the light of our generalized approach.

1. Introduction

Here we will review some basics of spin/polarization dynamics in storage rings and

define the dynamical systems that act as base model for this study.

We will employ a completely time-discrete picture, i.e. in the language of storage

rings: we will fix an azimuth (location) in the ring and work with one-turn-maps

only. We will fully neglect Stern-Gerlach type of back-reaction of the spins on the

orbital trajectories, in other words the spin dynamics acts as passenger/spectator

on top of the completely self-contained orbital motion.

1.1. Spin/Orbit Dynamics

We assume the orbital motion is in action angle variables J = const and φ ad-

vances linearly and uniformly. We generalize the model to d degrees of freedom

(2d-dimensional phase space). Typically spin-orbit models have d0 = 1 to 3. It

is, however, often useful to increase d by the number of independent RF-elements

(RF-dipoles, RF-solenoids, RF-quadrupoles, etc.) that act on spin inside the stor-

age ring. We put the d phases on the d-torus T d where we assume all phases in

normalized units φ = µ/(2π) so that the 1-torus can be viewed as T = R mod 1 .

The orbital map Mω advances the phases by the tune ω = const ∈ T d.

Mω : T d → T d, φ 7→ Mω(φ) = φ+ ω mod 1 . (1)
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In principle, more general (bijective) maps on the d-torus are permissible, but we

consider this to be an unnecessary complication within the scope of this paper. We

remind the reader that ω (and Mω) are called resonant if a k ≡ (k0, ~k) ∈ N1+d with

k 6= 0 exists so that k · (1, ω) = 0. If Mω is non-resonant, then for every φ0 ∈ T d

the sequence {Mn
ω (φ0) : n ∈ Z} is dense in T d.

We assume the BMT-evolution for vector polarizations ~s ∈ R3 and tensor Po-

larizations s̄ ∈ R3×3 with s̄ = s̄T and trace s̄ = 0. That means that the one-

turn-polarization transport along an orbital trajectory starting at φ ∈ T d is given

by

~s 7→ R(φ)~s & s̄ 7→ R(φ) s̄ R(φ)T , (2)

where the function R is defined

R : T d → SO(3) , φ 7→ R(φ) . (3)

The complete one turn map of the polarization-orbit trajectory is

K :

(

φ

~s (or) s̄

)

7→
(

Mω(φ)

R(φ)~s (or) R(φ) s̄ R(φ)T

)

. (4)

We define a “spin” (ŝ, š) to be a “polarization” (~s, s̄) with norm 1 for a suitable

norm which is invariant under SO(3) transport:

‖ŝ‖2 :=
√
ŝTŝ = 1 → ‖R~s‖2 = ‖~s‖2 (5)

‖š‖t :=
√

trace (šTš) = 1 → ‖R s̄RT‖t = ‖s̄‖t . (6)

We therefore choose the one turn map of the spin-orbit trajectory identical to Eq.

(4).

1.2. Dynamics of Fields

The time discrete dynamics of fields looks a little bit un-intuitive at first sight. So

let’s sidetrack to time-continuous spin dynamics for a tiny moment. In continuous

time a vector polarization- or spin field is a field T d+1 → R
3, (φ, θ) 7→ s(φ, θ), where

θ is the generalized azimuth along the ring, so that, given s(·, θ0) at some θ0, evalu-

ating the field s evaluated at some θ1 > θ0 for some φ is equivalent to transporting

s from θ0 to θ1 with the BMT-flow and starting from the backwards tracked φ. The

BMT-flow in a storage ring is non-autonomous, but periodic so that the one turn

map at each given reference azimuth is autonomous. Correspondingly, we define

a time-discrete vector/tensor polarization/spin field (e.g. via the autonomous one

turn map of a storage ring) as a sequence of fields Fn := ~Sn/Ŝn / Fn := S̄n/Šn,

n ∈ Z, on the torus: Fn : T d → R2 / Fn : T d → R3x3 so that

Fn+1(Mω(φ)) = R(φ)Fn(φ) ⇔
Fn+1(φ) = R(M−1ω (φ))Fn(M

−1
ω (φ)) (7)

Fn+1(Mω(φ)) = R(φ)Fn(φ)R(φ)
T ⇔

Fn+1(φ) = R(M−1ω (φ))F n(M
−1
ω (φ))R(M−1ω (φ))T , (8)
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and in the direction of decreasing n as Fn−1(φ) = R(φ)−1 Fn(Mω(φ)), and

Fn−1(φ) = R(φ)−1 Fn(Mω(φ))R(φ) respectively. Note that in the language of7

Fn+1 = Mω R · Mω Fn, where Mω is the Perron-Frobenius operator associated

with Mω.

The vector/tensor polarization/spin fields are invariant, if Fn+1 = Fn, or

Fn+1 = Fn respectively. In this case we take the opportunity to drop the index n.

Thus we define the invariant vector polarization field (IvPF), the invariant vector

spin field (IvSF), the invariant tensor polarization field (ItPF), and the invariant

tensor spin field (ItSF) by

IvPF: ~P (φ) = R(M−1ω (φ)) ~P (M−1ω (φ)) (9)

IvSF: N̂(φ) = R(M−1ω (φ)) N̂ (M−1ω (φ)) (10)

ItPF: P̄ (φ) = R(M−1ω (φ)) P̄ (M−1ω (φ))R(M−1ω (φ))T (11)

ItSF: Ň(φ) = R(M−1ω (φ)) Ň (M−1ω (φ))R(M−1ω (φ))T . (12)

Note that the trivial polarization fields ~Pnull(φ) ≡ ~0 and P̄ null(φ) ≡ 0 are always

invariant. They can, however not be normalized to generate spin fields. Also note

that the IvPFs as well as the ItPFs form real linear spaces, i.g. if ~P1 and ~P2 are

IvPFs, then so is µ~P1 + ν ~P2 for real µ, ν.

Many more systems exist with “polarization-” or “spin-like” dynamics — and

we will discover some in the course of the examples. Two natural questions arise:

(Q1) : Are these (and other) invariants somehow related for common Mω, R ?

(Q2) : How do they change with changing Mω, R ?

The new formalism mentioned in the title and described in the following sections

helps at least in part answering these questions.

The interested reader might have discovered a certain clumsiness when it comes

to describing vector/tensor polarization/spin fields efficiently at the same time. This

is in part unavoidable when using the standard explicit formalism. When using

our new formalism, the simultaneous treatment of these separate entities becomes

almost trivial — since they all share the property that they are “polarization/spin-

like”.

2. The New Formalism

In the Sec. 2.1 we will introduce the basic tools. We will do that in a slightly informal

way in the sense that we will hide certain aspects of the framework. Although these

aspects are in a way essential for a thorough understanding of the results, they are

possibly not very useful for making first contact with the new formalism.

In Sec. 2.2 we will briefly discuss the hidden secret ingredient without going into

too much detail since this would clearly be beyond the scope of this paper. The

reader anxious to miss a detail is referred to the sources1–6 in the references.

Finally Sec. 2.3 and 2.4 present two (maybe 2 1
2 ) theorems that I personally con-

sider the highlights of our results in the sense that can particularly easily applied
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Fig. 1. Example of C0-IvSF driven by 1-d (vertical) orbital motion. The simulation was performed
using the code SPRINT on a lattice of HERA–p.

to practical problems of spin dynamics and are in fact helpful for their discus-

sion/solution. The sources1–4 state further theorems which are more intricate and

are therefore not treated in this overview paper.

2.1. Basics

SO(3)-Action :

Let E be some “set” and

l : SO(3)× E → E , (A, x) 7→ l(A;x) ∈ E , (13)

so that

l(1;x) = x ∀x ∈ E

l(A2A1;x) = l(A2; l(A1; , x)) ∀x ∈ E & ∀A1, A2 ∈ SO(3) , (14)

then l is the SO(3)-action of the SO(3)-Space (E, l). If E is a linear space and l

is linear in A & x, then l is called a representation of SO(3) on E. Actions can

of course be defined any group: With any SO(3)-map A and using the standard

rules of matrix exponentiation, gA : Z × E → E, (n, x) 7→ gA(n;x) := l(An;x) is a

Z-action (for the group (Z,+)). We can now immediately apply this concept to the

spin-like systems that we know from Sec. 1

Vector pola.: E~v := R3, l~v(A;~s) := A~s

Vector spin : Ev̂ := S2, lv̂(A; ŝ) := Aŝ

Tensor pola.: Et̄ := {s̄ ∈ R3×3 : s̄ = s̄T, traces̄ = 0}, l̄t(A; s̄) := A s̄AT

Tensor spin : Eť := {š ∈ Et̄ : ‖š‖t = 1}, lv̂(A; š) := A šAT

If we substitute R for A we have formalized the transport mechanism for all 4

dynamics at once. Moreover we can write for the combined E/orbit-map K of
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(E, l) with dynamics given by Mω and R. For E in E~v, Ev̂, Et̄, Eť, l in l~v, lv̂, l̄t,

ľt, and x in ~s, ŝ, s̄, š, :

K : T d × E → T d × E,

(

φ

x

)

7→
(

Mω(φ)

l(R(φ);x)

)

. (15)

Now with gK : Z×T d×E → T d×E, gK(0;φ, x) = (φ, x), (n, φ, x) 7→ gK(n;φ, x) :=

K(gK(n − 1;φ, x)) = K−1(gK(n + 1;φ, x)) is a recursively defined Z-action which

describes the time-discrete evolution of our dynamical system.

Furthermore for each field F out of ~P , N̂ , P̄ , Ň , the invariance condition be-

comes:

F ◦Mω = lv(R;F ) or equivalently (16)

F = lv(R ◦M−1ω ;F ◦M−1ω ) = lv(MωR;MωF ) , (17)

with Mω being the Perron-Frobenius operator corresponding to Mω as in7.

Let’s add some more useful examples of SO(3)-actions: First there is the singlet

representation Eid = R, lid(A; ρ) := ρ. It makes the evolution of a Liouville phase-

space density (PSD) an SO(3)-action:

Ψn+1 = lid(R; Ψn ◦M−1ω ) ≡ Ψn ◦M−1ω ≡ MωΨn , (18)

i.p. for an invariant Liouville PSD the invariance condition reads Ψ ◦ Mω =

lid(R; Ψ) ≡ Ψ.

Moreover, given two (E, l)-spaces ((E1, l1) and (E2, l2)) one may define the prod-

uct space E1×2 = E1 × E2,

l1×2(A; (x1, x2)) := (l1(A;x1), l2(A;x2)) . (19)

(E, l)-Orbit Ex of x :

Now that we know how to operate an SO(3)-map A on any x ∈ E, we will generalize

the notion of an orbit: For all x ∈ E we define the (E, l)-Orbit

Ex := l(SO(3);x) := {l(A;x) : A ∈ SO(3)} . (20)

We note that with gK as define above, the (E, gK)-orbit gK(Z;φ, x) = {K [n](φ, x) :

n ∈ Z}, where K [0] = Id and K [n] = K ◦ K [n−1] = K−1 ◦ K [n+1] is the

more conventional notion of a (time-discrete) “orbit”, namely the result of iter-

ating an autonomous map infinitely often on some given starting point. Let us

now consider the E-motion only and define gK|E(n, φ;x) as the x component of

gK(n;φ, x). Then gK|E(Z, φ;x) = {l(R[n](φ);x) : n ∈ Z}, with R[0](φ) = 1,

R[n](φ) = R(Mnω(φ))R
[n−1](φ) = R(M (n+1)ω(φ))

−1R[n+1](φ). The R[n](φ) gen-

erate either SO(3) or a subgroup thereof. Thus our new notion of an (E, l)-orbit is

just a generalization of the conventional “orbit” of a dynamical system.

Some examples of (E, l)-orbits are:

l~v(SO(3);~s) ≡ S2 · ‖~s‖2 , l~v(SO(3);~0) = ~0 , lv̂(SO(3); ŝ) ≡ S2 . (21)
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It is clear that every Ex is a invariant set of SO(3), since ∀A ∈ SO(3) : AEx =

Ex. Moreover, the T d × Ex are invariant sets of the combined “spin”-orbit§ map

K from Eqs. (4) and (15)

K(T d × Ex) = T d × Ex . (22)

Isotropy Group :

We now come to a concept which is, in a way, conjugate to the (E, l)-orbits. For

x ∈ E, the subgroup of SO(3) for which x is a fixed point of l(A; ·) is called isotropy

group of (E, l) at x:

Iso(E, l;x) := {A ∈ SO(3) : l(A;x) = x} . (23)

Generally, larger isotropy group at x means smaller orbit through x, i.p.

Iso(E, l;x) = SO(3) iff Ex = {x}. For example:

Iso(E~v, l~v;~0) = SO(3) , Iso(E~v, l~v;~s 6= ~0) = {rotations around ~s} ∼= SO(2) .

(24)

We will need the isotropy groups for stating the Normal Form Theorem below.

G-Map (of SO(3)) :

We now come to structure preserving maps between SO(3)-spaces. Let Γ :

(E1, l1) → (E2, l2), x 7→ Γ(x). If

l2(A; Γ(x)) = Γ(l1(A;x)) , ∀A ∈ SO(3) & ∀x ∈ E1 , (25)

then Γ is called a G-map (of SO(3)). We want to stress the point that a “G-

map of SO(3)” is not (in our notation) an “SO(3)-map” which is just a map

A ∈ SO(3), while Γ in general 6∈ SO(3)! As an example we take Ev̂ and Eť. Then

Γť←v̂ : Ev̂ → Eť,

ŝ 7→ Γť←v̂(ŝ) :=

√

3

2

(

ŝŝT − 1

3
1

)

(26)

is indeed a G-map from Ev̂ to Eť. The concept of G-maps will become essential

in stating the Decomposition Theorems below. The G-map Γť←v̂ will be used in

example 1.

2.2. The Secret Ingredient: Global Regularity Constraints

The framework so far was only described technically. In order to state and

prove theorems regularity constraints are needed. The kind of regularity chosen

here is global continuity. The “sets” involved are in fact topological spaces,

i.e. sets that have been explicitly assigned a topology. Moreover the involved

functions/maps/fields/. . . need to be continuous everywhere¶ on E. For example:

§We are aware that we are overusing “orbit” here for the orbital phases on one side and for the
result of a group acting on a set on the other side. We think, however that the distinction is quite
clear from the context.
¶not just in some environment of certain points of interest!
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Fig. 2. Example of C0-IvSF driven by 2-d (vertical & horizontal) orbital motion. The simulation
was performed using the code SPRINT on a lattice of HERA–p.

R ∈ C0(T d,SO(3)), Mω ∈ Homeo(T d), i.e. Mω ∈ C0(T d, T d), Mω ∈ aut(T d) (is

globally invertible), and M−1ω ∈ C0(T d, T d). Furthermore all our (invariant) fields

(and candidates) must be globally continuous. To indicate this we will from now on

call them:

C0-IvPF : (~P ∈ C0(T d, E~v)),

C0-IvSF : (N̂ ∈ C0(T d, Ev̂)),

C0-ItPF : (P̄ ∈ C0(T d, Et̄)), and

C0-ItSF : (Ň ∈ C0(T d, Eť)), or just

invariant (E, l)-field : (F ∈ C0(T d, E)).

We note here that global continuity is, in a way, a strong restriction (see Sec. 3.4),

but we also note that global continuity is, in a way, a weak restriction, since with

very few exceptions, functions realized in physics normally tend to be smooth (C∞)

except on a countable set of lower dimensional “cracks”. It may well be that a

system has a, say C0-IvSF, but that the invariant is nowhere C1. — Then the

C0-IvSF would possibly fail to generate nice adiabatic invariants (as needed for

Froissart–Stora8,9) and it could be numerically ill-conditioned which means that

numerically no or no stable approximation to an IvSF (assumed piece-wise smooth

but not globally continuous) could be found. Our framework does not make (in

the way it is stated) any statements about fields which are not C0. However, the

regularity constraints could be made stronger (→ globally Ck, k > 0) or weaker (→
only measurable), thereby potentially modifying the applicability of the premises

and the strength of the conclusions of our theorems.

2.3. The Normal Form Theorem (NFT)

The following theorem nicely states a criterion that relates invariant fields with nor-

mal forms— for all possible combinations of E and l. Let T ∈ C0(T d,SO(3)), (E, l),
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Mω, R as before, and x ∈ E fixed. Define F ∈ C0(T d, E), and R′ ∈ C0(T d,SO(3))

by

F := l(T ;x) , R′ := TT◦Mω R T . (27)

Then F is an invariant (E, l)-field (F ◦Mω = l(R;F )), iff

R′(φ) ∈ Iso(E, l;x) ∀φ ∈ T d . (28)

The proof can be found in1,2,4. If R′ is element of some proper subgroup of SO(3),

then (Mω, R
′) is called a normal form of (Mω, R). The NFT answers (Q2) from

Sec. 1.2 to the extent that invariant fields can be related to transformed dynamics

R′ that look simpler than (are normal forms of) the original dynamics R.

Now take for example vector spin motion on (Ev̂, lv̂) with x̂ := (0, 0, 1)T. Then

N̂ := lv̂(T ; x̂) is a C0-IvSF for some T iff R′(φ) = T (Mω(φ))
T R(φ) T (φ) ∈

SO(2) ∀φ. As a matter of fact it is potentially simpler to proof that the trans-

formed dynamics R′ lies in SO(2) ⊂ SO(3) than showing that (N̂ ◦ Mω)(φ) =

l(R(φ); N̂(φ)), ∀φ. However, one has to admit that no significant progress towards

general existence theorems for C0-IvSFs has been made since the NFT was stated

first in1,2.

2.4. Decomposition Theorems

The following lemma and corollary allow to relate various realizations of the same

dynamics. In my opinion they are of greatest practical interest since the enable

the (rigorous) generation of a multitude of useful invariants from, say a C0-IvSF, at

only little extra cost. In particular the SML/DC completely and consistenly answer

(Q1) from Sec. 1.2.

The SO(3) Mapping Lemma (SML): Let Γ ∈ C0((E1, l1), (E2, l2)) be a G-map

(of SO(3)) from (E1, l1) to (E2, l2), f1 ∈ C0(T d, E1), and f2 ∈ C0(T d, E2) be defined

by f2 := Γ ◦ f1. Then
l2(R; f2)=Γ(l1(R; f1)) (29)

for all Mω, R, i.e. the field dynamics from (E1, l1) is induced on (E2, l2) by Γ. In

particular f1◦Mω = l1(R, f1) ⇒ f2◦Mω = l2(R, f2), in other words, given that f1 is

an invariant (E1, l1)-field, then f2 = Γ ◦ f1 is an invariant (E2, l2)-field.

The proof1,2,4 is too short to be omitted: The field f1 evolves on (E1, l1) via

f1 7→ f ′1 = l1(R ◦M−1ω ; f1 ◦M−1ω ) the field f2 evolves on (E2, l2) via f2 7→ f ′2 =

l2(R ◦M−1ω ; f2 ◦M−1ω ). By definition of f2 we have f2 = Γ ◦ f1. Then by definition

of the G-map γ it follows that f ′2 = l2(R ◦M−1ω ; Γ ◦ f1 ◦M−1ω ) = Γ(l1(R ◦M−1ω ; f1 ◦
M−1ω )) = Γ ◦ f ′1, The claim follows from Mω being invertible; q.e.d.

If Γ ∈ Homeo((E1, l1), (E2, l2)), then also the converse is true, and thus f1 is an

invariant (E1, l1)-field iff f2 is an invariant (E2, l2)-field.

We only mention here that the Decomposition Corollary (DC) generalizes the

SML to G-maps from (E1, l1)-orbits E1,x1 with arbitrary x1 ∈ E1 to (E2, l2)-orbits

E2,x2 with arbitrary x2 ∈ E2.
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3. Examples

3.1. Example 1: Relation C0-IvSF ↔ C0-ItSF

The G-map Γť←v̂ from Eq. (26) is in C0(Ev̂, Eť). Thus the SML applies and hence

Ň := Γť←v̂(N̂) is a C0-ItSF, if N̂ is a C0-IvSF.

In the case that the constructed C0-ItSF has 2 distinct eigenvalues, then if the

C0-IvSF is unique up to global sign, so is the C0-ItSF6.

In order to construct tensor spin fields that have 3 distinct eigenvalues we define

E⊥ := {(û, v̂) ∈ Ev̂ × Ev̂ : û ⊥ v̂} and then Γ
(α,β)
3ev : E⊥ → Eť

(f̂ , ĝ) 7→ α1− (2α+ β)f̂ f̂T + (β − α)ĝĝT (30)

with α ∈ (0,∞), −α/2 < β < α, α2 + αβ + β2 = 1/2‖ is a G-map in C0(E⊥, Eť).

Now assume N̂1 is a C0-IvSF and thus Γť←v̂(N̂1) is a C0-ItSF. It is clear that an

invariant (E⊥, lv̂×v̂)-field needs a second independent C0-IvSF N̂2 ⊥ N̂1. We have

shown in6 that Γ
(α,β)
3ev (N̂1, N̂2), N̂1 ⊥ N̂2 can only be a C0-ItSF, if the the vector

spin system is on spin-orbit resonance, i.e. when the C0-IvSF is non-unique (by

more than just a global sign). The condition N̂1 ⊥ N̂2 is no restriction because if

N̂1 and N̂2 are linearly independent then two non-zero C0-IvPFs ~P‖ and ~P⊥ exist

with N̂2 = ~P‖ + ~P⊥ and ~P⊥ can be normalized to give N̂⊥ ⊥ N̂1.

If a C0-ItPF has only 1 eigenvalue, it must be zero and thus the C0-ItPF can

only be the trivial one (0).

3.2. Example 2: Spin-1/2 Density Matrix

The physics-interface between the macroscopic, classical description of a particle

beam in an accelerator, and a quantum (scattering) processes is the density matrix

ρ. (We will use ρ(1/2) for spin-1/2 particles, and ρ(1) for spin-1 particles.) In a

collider the beam might change from turn to turn and so ρ = ρ
n
. The expectation

value of an arbitrary observable represented by the operator O at turn n is given

by 〈O〉(n) =
∫

dφ dJ trace (ρ
n
O). Our framework handles arbitrary fixed sets of

orbital actions J = const. The description of the beam then follows from integrating

over all actions. Hence,

ρ(1/2)

J
(φ) := ΨJ(φ)

1

2

(

1 + ~σ · ~SJ(φ)
)

, (31)

where ΨJ is the (orbital) Liouville PSD and ~SJ the polarization field describing the

beam, and ~σ is the vector of Pauli matrices. In the following we will suppress any

reference to J . ρ(1/2) is a complex self-adjoint matrix ρ(1/2) ∈ E1/2 := {r ∈ C2×2 :

r† = r}. We define Γ1/2 : Eid × E~v → E1/2,

(ψ,~s) 7→ Γ1/2(ψ,~s) :=
1

2

(

ψ1 + ~σ · ~s
)

, (32)

‖A possible solution is α = 1/2, β = (
√
5− 1)/4.
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and l1/2 via Eq. (32) and

l1/2(A; Γ1/2(ψ,~s)) := Γ1/2(lid(A;ψ), l~v(A;~s)) . (33)

Then, with

ρ(1/2) = Γ1/2(Ψ,Ψ~S) (34)

Γ1/2 ∈ Homeo(Eid × E~v, E1/2) is G-map.

This implies that ρ(1/2)

equi
= Γ1/2(Ψequi,Ψequi

~P ) is an invariant (E1/2, l1/2)-field, iff

Ψequi is an invariant Liouville PSD and ~P is a C0-IvPF. Only in such an equilibrium

state, ρ and thus 〈O〉 become independent of n.

The maximum attainable equilibrium polarization state is realized when ρ(1/2)

equi
→

Γ1/2(Ψequi,ΨequiN̂), i.e. when N̂ is a C0-IvSF.

3.3. Example 3: Spin-1 Density Matrix

The density matrix for a beam of spin-1 particles is slightly more intricate since

spin-1 particles in addition to carrying a vector polarization also carry a tensor

polarization.

ρ(1) := Ψ
1

3

(

1 +
3

2
~Σ · ~S +

√

3

2

3
∑

i,j=1

S̄ij(Σi Σj +Σj Σi)
)

, (35)

with

Σ1,2,3 :=

√

1

2





0 −i 0

i 0 −i
0 i 0



 ,





1 0 0

0 0 0

0 0 1



 ,





0 1 0

1 0 1

0 1 0



 (36)

Also ρ(1) is a complex self-adjoint matrix ρ(1) ∈ E1 := {r ∈ C3×3 : r† = r}. Now we

define Γ1 : Eid × E~v × Et̄ → E1,

Γ1(ψ,~s, s̄) :=
1

3

(

ψ1+
3

2
~Σ · ~s+

√

3

2

3
∑

i,j=1

s̄ij(Σi Σj+Σj Σi)
)

, (37)

l1(A; Γ1(ψ,~s, s̄)) := Γ1(lid(A;ψ), l~v(A;~s), l̄t(A; s̄)) , (38)

and

ρ(1) = Γ1(Ψ,Ψ~S,ΨS̄) . (39)

Then Γ1 ∈ Homeo(Eid × E~v × Et̄, E1) is G-map, and hence ρ(1)

equi
=

Γ1(Ψequi,Ψequi
~P ,ΨequiP̄ ) is an invariant (E1, l1)-field, iff Ψequi is an invariant Liou-

ville PSD and ~P is a C0-IvPF and P̄ is a C0-ItPF.

The maximum attainable equilibrium polarization state is realized, when ρ(1)

equi
→

Γ1(Ψequi,ΨequiN̂ ,ΨequiŇ), i.e. when N̂ is a C0-IvSF and and Ň is a C0-ItSF.
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3.4. A Discontinuous Example (4)

The model that we discuss here is slightly artificial in the sense that the orbital

motion has to be exactly on-resonance — for a moderately low-order resonance.

We study only vertical motion d = 1 in a storage ring with 2 Siberian Snakes.

Mω is chosen resonant, i.e. ωy ≡ Q
(n)
y = 1

4n−2 , n = 1, 2, 3, . . . The model of the

ring is the so called single resonance model 10–12 equipped with a Lee–Courant 2-

snake scheme13–16. It consists of 2 Siberian snakes 180◦ in azimuth apart, where

both snake axes are in the mid-plane and the axes are perpendicular. Lee–Courant

schemes are among those that keep the unperturbed n̂0-axis, i.e. the invariant vector

spin field on the design orbit (for J=0) strictly vertical and fix the design orbit spin

tune to ν0 = 1/2. However, for n ∈ N orbital tune and the design orbit spin tune

fulfill a (2n− 1)st order resonance condition ν0 = (2n+1)Q
(n)
y . As it turns out2,17,

in order to be single valued under the evolution by the one turn map, the IvSF

needs 2n jump-discontinuities (local sign flips) at phases distributed uniformly on

the torus. Therefore the IvSF is not a C0-IvSF, and thus the framework presented

here does not apply. However, the corresponding ItSF is a C0-ItSFand thus for the

C0-ItSF the framework does apply. Note that Γť←v̂ from example 1 (Sec. 3.1) is

not bijective (it’s more or less a quadratic form), so that the existence of a C0-ItSF

does not imply the existence of a C0-IvSF.
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